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bstract: In order to identify and quantify a new class of pollutants, the microplastic, originating 
from anthropogenic activities, proposed to be included in the list of indicators monitored for deltaic 
ecosystems quality establishment, it was necessary to carry out a screening of the literature 

regarding the pollution of continental waters and marine waters with microplastics, sampling, purification 
and analysis methods, the overall impacts on aquatic fauna, with an emphasis on the toxicity of ingested 
microplastics, the susceptibility of organisms to the ingestion of microplastics and the physical impact of 
microplastics, especially on freshwater aquatic species. Analysis of the literature was done by querying 
the database of ISI quoted articles, Web of Science Core Collection, using specific keywords. 
Key words: microplastics, aquatic ecosystems, sampling, purification, methods 
 
INTRODUCTION 
 
Anthropogenic activities have resulted in the accumulation of numerous and diverse types of materials in 
the sediments of aquatic ecosystems, including synthetic polymers (plastic). The production of these 
chemical synthesis compounds, along with the development of mass production technologies, has made 
plastic one of the most commonly used materials. Among the major findings was the elucidation of sulfur 
vulcanization of natural rubber. At the beginning of the nineteenth century, several attempts were made to 
create synthetic polymers, including polystyrene (PS) and vinyl polychloride (PVC), but at that time the 
compounds were either too coarse or were unable to keep form to have commercial significance. The first 
synthetic polymer that was produced en masse, was Bakelite, a substance of resinous origin, developed 
by the Belgian chemist Leo Baekeland, in 1909. 
 
Modern forms of PVC, polyethylene terephthalate (PET), polyurethane (PUR), were made during the 
1930-1940, so that in the early 1950s the method to be developed the method for the production of high-
density polyethylene. 
In order to meet the various purposes for which plastic is made, the polymer-based materials from which 
it is composed are processed together with numerous chemical additives such as plasticizers to ensure 
flexibility, flame retardants, inorganic fillers to provide impact resistance, or pigments, for coloring. It 
follows that plastic is a complex of chemicals, each having a potential negative impact on the 
environment. The impact is even greater as it is a material whose use tends to grow. The plastics market 
is dominated by four main classes: (1) polyethylene - PE - with a world production of 73 million tons in 
2010, (2) polyethylene terephthalate - PET - 53 million tos in 2010, (3) polypropylene - PP - 50 million 
tons in 2010 and (4) polyvinyl chloride - PVC - 35 million tons in 2010 (UNEP 2016). 
The term “microplastic” refers generally to plastic particles with a diameter of <5 mm, this being the 
definition used by most authors. It has also been suggested to redefine the term for plastic objects <1mm 
(Andrady 2011; Browne et al., 2011). Lambert (2014) describes macroplastics as particle size > 5mm, 
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mesoplastics with dimensions ≤ 1 mm to> 0.1 μm and nanoplastics ≤ 0.1 μm. However, the upper limit of 
5 mm is generally accepted because this dimension includes a wide range of particles that can be easily 
ingested by aquatic organisms.  
Plastic enters into the aquatic environment from various sources and through various ways such as: (1) 
passing through water treatment plant filters, (2) applying biosolids - nutrient-rich materials resulting from 
domestic water treatment - in agriculture (Nizzetto et al., 2016), (3) incidental emissions such as, for 
example, those resulting from the wear of tires, (4) emissions from various industrial processes, and (5) 
atmospheric transport and fiber deposition. 
The microplastics isolation from the environment can be particularly laborious especially if the samples 
contain a lot of organic substance. Also, the spectroscopic identification of synthetic polymers is limitated 
by high concentrations of pigments and the wear and disintegration of particles and microplastic fibers 
over time. As a result, the detection and confirmation of microplastics by analytical methods requires 
access to sophisticated equipment. 
Because they have been investigated for a short time, the long-term effects of exposure to microplastics 
are unknown. Freshwater species represent a part of a complex trophic state, where there is a wide 
variety of food types and different feeding strategies. Research on marine organisms has reported the 
phenomenon of malnutrition associated with intensive feeding with microplastics that replace part of 
natural food (Cole et al., 2015, Phuong et al., 2016, Welden and Cowie 2016). 
The purpose of this study is to identify through analysis of the literature the current state of knowledge 
regarding methods of evaluation of microplastics in freshwater and their impact on biota. 

 
MATERIAL AND METHODS 
 
The methods used were a screening of the literature on continental and sea water pollution with 
microplastics, the general impact on aquatic fauna, with an emphasis on ingestion of microplastics, 
susceptibility of organisms to ingestion of microplastics and the physical impact of microplastics, 
especially on freshwater aquatic species. This specialized literature screening was conducted by querying 
the database quoted articles from Web of Science Core Collection (Clarivate Analytics, USA) by using a 
keyword suite (Table 1). 

 
Table 1 Web of Science Core Collection Database Query Summary and Search Keys Used (source: 

http://apps.webofknowledge.com/WOS_GeneralSearch_input.do; accessed in 18 March 2018) 
 

Key words used Data base 

The time period 
that the 

identified items 
were published 

The number of 
results identified 

identificate 1 

microplastic pollution  
Web of Science 
Core Collection 

2004-2018 625 

microplastic pollution in freshwater  
Web of Science 
Core Collection 

2007-2018 105 

marine microplastic pollution  
Web of Science 
Core Collection 

2004-2018 538 

microplastic ingestion  
Web of Science 
Core Collection 

1976; 2008-2018 285 

microplastic ingestion in freshwater  
Web of Science 
Core Collection 

2014-2018 53 

 
The articles were selected according to relevance (objectively set by the authors of this report) for the 
topic approached by the degree of novelty and the area of study investigated (Figure 1). Although this 
analysis is not an exhaustive summary of the literature, we consider that the present study provides a 
real, correct and objective picture of the current state of knowledge in the field of microplastic pollution 
impact assessment in aquatic ecosystems. 
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Figure 1. Geographical distribution of studies conducted on microplastics from freshwater. A - 
Percentage distribution of the number of studies conducted on microplastics from freshwater; B - The 
(absolute) distribution of the number of studies conducted on microplastics from freshwater at the 
European level; C - Number of sampling points investigated in studies conducted on microplastics from 
freshwater (A-S = South America, A-N = North America) 
 
RESULTS ANS DISCUSSION 
 
Sampling for the determination of microplastic concentrations in surface waters, bottom 
sediments and biota 
 
In order to obtain analytical data on microplastic content in the aquatic environment, it is necessary that 
the sampling step is properly carried out, taking in account the multitude of sources that may contaminate 
samples during sampling and transport. Therefore, particular attention should be paid to exogenous 
contamination (induced by the protective equipment used - clothing) that may compromise the sampling, 
leading to overestimation of the microplastic concentrations in the sampled material. At the same time, 
during laboratory analyses, one must keep in mind the ability of microplastics to move into the air, 
especially fibers with high contamination potential, which can cause problems during the actual 
determinations (Hidalgo-Ruz et al., 2012, Nuelle et al., 2014, Norén & Naustvoll 2010). As a measure to 
limit and remove potential sources of contamination from the laboratory, it is advisable to replace plastic 
devices/equipment or with plastic content, with glass or porcelain devices/equipment.  
 
In the case of microplastics sampled from surface waters, it should be considered that in this type of 
substrate, the concentrations of this contaminant type are relatively low and the sampling of microplastic 
particles involves the filtration of large sample volumes (Doyle et al., 2011). In most situations, for 
sampling microplastics from surface waters, it is enough to trace the sampling net (Figure 2) even below 
the water's surface, considering the water volume that passes through the sampling device. Depending 
on the density of the plankton in the area, nets with mesh sizes between 100 and 300 μm will be used. 

 
 

Percentage distribution of studies on microplastics in freshwater 

Distribution, % 

No. of articles 
(absolute 
values) 

Number of sampling points investigated 
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Figure 2. Device for microplastic sampling in surface waters 

 
Determining the volume of filtered water will be the basis for calculating the microplastic concentrations 
(elements / grams) per volume of water. The volume of filtered water can be indirectly quantified by a 
flowmeter mounted on the sampling device, based on the flow rate of the water and the traction time. The 
concentrated sample at the bottom of the sampling device (collector glass) will be transported in a 
container that does not pose a risk of contamination of the sample and is kept in a dark place under low 
temperature conditions. If particles of visible plastic material are identified, they will be directly sorted, 
dried and stored in the dark until further analysis (Hidalgo-Ruz et al., 2012). At the same time, it is 
important to ensure that no residual sample is left in the sampling device, which would lead to a 
microplate transmission at the next sample. From the analysis of the literature, the mesh sizes used for 
the sampling of microplastics varied between 50 and 3000 μm (Hidalgo-Ruz et al., 2012), and the 
sampling fillet sizes ranged from 2 to 5 m in length. Considering the level of planktonic density in surface 
waters characteristic of the Danube Delta Biosphere Reserve (Spiridon et al., 2015), the optimal device 
for the sampling of microplastics is characterized by a length of 2-4 m, an opening of the metallic 
sampling frame 400 x 700 mm and a mesh size of approximately 300 μm. It is worth mentioning that this 
device type is most commonly used in order to avoid the risk of mesh clogging. The literature is relatively 
"poor" in the sampling methods presentation for bottom sediments, characteristic of freshwater aquatic 
ecosystems, and the presented are briefly detailed. At the European and international level, it was found 
that sampling of this type of substrate is made from the surface layer, 5 to 10 cm (Van Cauwenberghe et 
al., 2013), and the sampling quantity varies between 500 g and 10 kg (Hidalgo-Ruz et al., 2012). The 
sampling of the 5-10 cm layer is a fairly common approach, but there have also been identified cases 
where the sampling was at a depth of 30 cm, as reported by Claessens et al. (2011). 
 
Regarding sampling site selection methodology, in the studies conducted until the present, there seems 
to be inadvertencies, because many authors state that the distribution of microplastic particles is as 
dynamic as deposition sedimentation itself. In many scientific articles, applied sampling methodologies 
include random sampling in multiple locations, perpendicular or parallel transects with a brief description 
of the sampling point and, in some cases, the presentation of geographic coordinates. However, it can be 
observed that in most studies microplastic samples in the sediments are made at at least 5 distinct 
sampling points, considering that they are representative for two microplastic categories, respectively: 
microplastics with dimensions between 1-5 mm and 20 μm. 
 
In the case of microplastic particles from aquatic ecosystem biota, the methods have a very large 
variability and depend on the biological characteristics of the studied species. In marine research, many 
studies refer to large-scale biota, where direct ingestion of plastics is studied. In these cases, the plastic 
material in the intestinal content and excretions is relatively easy to recognize and counted (Wright et al., 
2013, Ivar do Sul & Costa 2013). In the case of small biota, for example transparent planktonic 
organisms, it is used the proper specimen, utilizing fluorescent solutions that facilitate the identification 
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and counting the microplastics. For this category of biotope, Raman or IR spectroscopy is used (Wright et 
al., 2013. Investigations on the ingestion of microplastes by vertebrates require a significantly higher effort 
and it seems that in this field, research is at an early stage, and specialist publications are rare. From the 
vertebrate category, the most frequent studies are made on fish specimens that can be sampled in 
scientific fishing campaigns and examined for microplastics ingested. For this category, the intestinal 
contents or the entire digestive tract is taken with metallic instruments and will be conserved by freezing 
for further transport and analysis in the laboratory. Only low-invasive methods have been identified for the 
sampling of microplastic specimens in ornithofauna without the specimens being studied sacrificed or 
sustained consequences with term effects. For this category, the sampling is made of regurgitated 
material (pelicans and cormorants) and faeces. Small invertebrates such as oligochaeta, bivalves and 
snails are collected according with the methodology of sampling of benthic organisms (Besseling et al., 
2012, Claessens et al., 2013) and are subjected to microplastic extraction and purification operations. 

 
Sample preparation - microplastics extraction and purification 
 
The microplastic extraction methods are based on plastic polymer densities ranging from 0.8 (silicone) 
and 1.4 g / cm3 (e.g. polyethylene terephthalate - PET), polyvinyl chloride (PVC), while foam expanded 
(polystyrene) has only a fraction of the initial polymer densities (<0.05 g cm-3). In the extraction step, the 
microplastic particles are separated from sediment residues that were taken with the sample by floating in 
high density supersaturated saline solution. Thus, the sample is mixed in the supersaturated saline 
solution by agitation or aeration for a determined time period. Upon completion of the agitation / aeration 
step, the plastic particles float to the surface and / or mass of the supersaturated saline solution, while the 
high densities particles settle on the bottom of the container. Subsequently, microplastics are recovered 
by removing the supernatant. In most cases, a saturated NaCl solution is used (Thompson et al., 2004, 
Browne et al., 2010, Claessens et al., 2011, Browne et al., 2011). The extraction efficiency varies 
depending on the saline solution used, but also depends on the shape, size and origin of the microplastic 
particles. Generally, the rate of recovery reaches a percentage of 80-100% (Fries et al., 2013; Imhof et 
al., 2012). 
 
The purification of microplastic samples is a mandatory step, especially for instrumental analyzes (FTIR / 
Raman spectroscopy, pyrolysis-GC / MS) to avoid interferences that may cause some errors in their 
identification. The simplest way to purify microplastic samples, but not the most effective, is stirring and 
rinsing with distilled / bidistilled water (McDermid and McMullen 2004). Another method for the purification 
of microplastic samples is the use of ultrasounds (Cooper and Corcoran 2010), which also involves the 
risk of sample degradation because some aging and brittle plastic particles may break during treatment. 
Among the most effective purification techniques are the method presented by Andrady (2011), which 
involves the use of mineral acids for the disintegration of organic impurities from samples taken from 
surface waters, and for the removal of soft tissues of biological samples, Claessens et al. (2013) 
recommends the use of hydrogen peroxide (H2O2) or nitric acid (HNO3). In the case of purification of 
microplastics taken from the sediment, the use of a 30% solution of hydrogen peroxide  seems to remove 
with increased efficiency natural organic residues (Imhof et al., 2012, Nuelle et al., 2014, Dubaish and 
Liebezeit, 2013). 

 
Methods used for detection and identification of microplastics 

 
The methodologies used to detect and identify microplastics are based on the molecular composition and 
"fingerprints" of polymers, which allow a clear assignment of studied microplastics to a certain polymeric 
origin.  
The GC-MS techniques (gas chromatography-mass spectrometry) have been applied in various studies 
of concentration determination and identification of microplastic categories. The polymeric origin of 
microplastics is achieved by comparing certified reference materials that generate characteristic 
pirograms (Nuelle et al., 2014, Fries et al., 2013). By using this technique, several types of polymers can 
be analyzed simultaneously. Although the GC-MS pyrolysis allows a relatively good distribution / 
identification of the microplasties to the type of polymer, it has the disadvantage that large particles can 
not pass through the pyrolysis tube and the technique is only suitable for the small microplastics category. 
Moreover, the technique only allows the analysis of a small part of samples and is not suitable for the 
analysis of a large number of samples collected in the monitoring programs, since it involves a long time 
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for proper analysis. However, there are expectations that in the near future this technique will be 
improved in terms of quantitative analysis. 
Raman spectroscopy is a simple technique that has been successfully used to identify microplastic 
particles in various high-reliability environmental samples (Van Cauwenberghe et al., 2013, Cole et al., 
2013, Murray and Cowie 2011, Imhof et al., 2012). Since plastic polymers have characteristic spectra, the 
technique can be applied based on comparison with the reference spectra (certified reference material). 
Raman spectroscopy is a "surface technique," and has the ability to identify a wide range of microplastic 
sizes, to very small particles, less than 1 μm (Cole et al., 2013). Raman spectroscopy may be combined 
with spectral imaging and gross results are generated in the form of images at a resolution below 1 μm2, 
based on the spectra of the analyzed sample. Theoretically, this would facilitate the detection of the 
smallest microplastic particles in aquatic ecosystems and beyond, but so far, such methodology has not 
been validated (Cole et al., 2013). One disadvantage of Raman spectroscopy is that the laser-excited 
fluorescence samples (some residues of biological origin in the samples) can not be measured because 
of the generation of erroneous spectra, which would lead to a compromised result. For this technique, it is 
strictly necessary to carry out a sample purification step in order to prevent the fluorescence effect and to 
ensure a clear identification of the type of polymer. 
 
Infrared (IR) or Fourier Transform Infrared (FTIR) spectroscopy offers the possibility of accurately 
identifying plastic polymer particles based on comparison with reference spectra (Thompson et al., 2004, 
Obbard, 2006, Vianello et al. 2013, Harrison et al., 2012, Frias et al., 2010) The plastic polymers have 
specific IR spectra with distinct band patterns, making IR spectroscopy an optimal technique for 
identifying the type of microplastics (Fig. Hidalgo-Ruz et al., 2012). At the same time, FTIR spectroscopy 
can provide additional information on the level of physico-chemical degradation of oxodisable 
microplastics by detecting the degree of oxidation (Corcoran et al., 2009). FTIR spectroscopy is 
characterized by two measurable ways of reflection and transmission. The first way (reflection mode) has 
the disadvantage that measurements on irregular shape microplastics may result in compromised spectra 
due to refractive error (Harrison et al., 2012). The second mode (transmission mode) is limited by a 
certain thickness of microplastic problems. It is only suitable for small microplastics. A significant 
advantage of FTIR spectroscopy is given by the ability to simultaneously record several thousand spectra 
in a single measurement area and therefore to generate very good resolution images 10 μm to 1000 
cm1). 
 
Assessing the impact of microplastics on aquatic species 
 
The first reports of sea and ocean water pollution with plastics date from the 1970s (Carpenter et al., 
1972, Carpenter & Smith, 1972, Colton et al., 1974, Fowler, 1987, Coe & Rogers, 2012) initially 
unsuccessful in drawing the attention of the scientific community to the potential effect on marine fauna. 
In the following decades, the interest in plastics pollution increased considerably, with an emphasis on the 
impact of plastic litter on aquatic species. Initially, the studies on marine waste concerned marine 
mammals (Laist, 1997), especially cetaceans (Clapham et al., 1999), but other marine species commonly 
caught in fishing nets were also targeted (Bullimore et al., 2001; Eriksson & Burton, 2003, Tschernij & 
Larsson, 2003). Also, the ingestion of marine material by sea species (Cadée, 2002, Mallory, 2008) and 
turtles (Bugoni et al., 2001; Tomás et al., 2002; Mascarenhas et al., 2004) in the world were studied, with 
an emphasis on their effects. Approximately 44% of the marine bird species have been confirmed (Rios et 
al., 2007), and moreover, in the case of a species of albatross Phoebastria nigripes, the feeding of plastic 
waste to chicks has also been documented (Andrady, 2011). With the almost exponential increase in the 
incidence of reports on the pollution with plastic materials in the North Pacific (Moore et al., 2001a, Moore 
et al., 2001b, Moore et al., 2002, Moore, 2008) plastic has become a priority research field in marine 
biology (Derraik, 2002, Page et al., 2004, Arthur et al., 2009). Particular concern was given to small 
pieces of plastic scrap, especially those that are not visible to the naked eye (Andrady, 2011), later called 
microplastics. Special attention has been paid to the intake of microplastics by marine and ocean fauna. 
More than 270 ISI articles strictly targeted to microplastics intake (Figure 3) have been published since 
2011, with an almost exponential increase.  
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Figure 3. The number of quoted articles from Web of Science Core Collection published since 2011, 
strictly focused on the ingestion of microplastics and the number of citations in Web of Science Core 

Collection (Web of Science Core Collection - accessed on 07.03.2018) 
 
Also, the number of studies oriented partially or tangentially to the effect of microplastics ingestion is 
much higher, being reflected by ~ 6732 citations of articles dedicated to the ingestion of microplastics. Of 
course, the number of studies that just recall or simply briefly relate to the effects of microplastic pollution 
on aquatic fauna is much higher. 
 
The ingestion of microplastics by aquatic fauna is a stringent problem worldwide and we therefore 
propose a screening of the literature on the impact of microplastics on aquatic fauna, with emphasis on 
the toxicity of ingested microplastics, susceptibility of marine organisms to ingestion of microplastics and 
respectively the physical impact of microplastics on marine, vertebrate and invertebrate marine species. 
 
Marine waters naturally contain many micro- and nano-particles (~ 106-107 particles per mL, 10 to 500μg 
/ L), most of them smaller than 100 nm (Rosse & Loizeau, 2003). Filtering organisms, from zooplankton to 
whales, commonly interact with these particles without any apparently unfavorable effect (Andrady, 
2011). Since none of these organisms have enzymatic pathways to decompose synthetic polymers, 
ingested microplastics are not digested or absorbed into the digestive tract and should therefore be bio-
inert. On the other hand, microplastics ingestion by microbiota presents a totally different problem. 
Microbiota generally has an increased potential for high persistence transfer of Persistent Organic 
Pollutants (POPs) and marine fauna (Bowmer & Kershaw, 2010). In particular, persistent organic 
pollutants taken from the water are those that give toxic effects. 
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Figure 4. Sources, transport and potential 
bioaccumulation of persistent organic compounds 
(POPs) associated with microplastics released 
into the environment (Ravit et al., 2017) 

Figure 5. Schematic representation of proposed 
action pathways for Adverse outcome pathway 
(AOP) induced microplastic exposure in the 
case of Paracyclopina nana marine copepod. 
Mode of action (MOA) is present at the 
subcellular level, being represented by oxidative 
stress-signaling pathways mediated by 
microplastic exposure, Adverse outcome (AO) is 
presented at the cellular and individual level 
(after Jeong et al., 2017) 

 
Any toxicity associated with plastics in general, also those associated with meso- and microplastics, may 
be attributed to one or more of the following factors: the release from the ingested plastic of toxic 
additives used in its manufacture and / or residual monomers from the process production. An example of 
residual monomer with toxic potential on fauna is bisphenol A (BPA) residual in polycarbonate products 
(Vandenberg et al., 2007), as well as the toxic potential of phthalates plasticizers used in PVC has been 
widely discussed in the literature (Latini et al., 2004), the toxicity of some intermediate chemical agents 
resulting from the partial degradation of plastics. For example, burned polystyrene, partially or totally, can 
produce styrene and other aromatic substances. Styrene, at low concentrations, may cause hearing loss 
and ingestion may cause changes in the nasal mucosa and then a considerable impairment of liver 
functions (William & Roper, 1992), aggregation of persistent organic pollutants presents in water by 
absorption and slow concentration in microplastic fragments. Plastics waste "cleanses" the water from 
dissolved chemicals (Figure 4), and by ingestion by fauna, they can become bio-available (Endo et al., 
2005). 
 
The literature regarding the ingestion of microplastics by vertebrates is very rich (Laist, 1997, Denuncio et 
al., 2011, Lazar & Gračan, 2011, Van Franeker et al., 2011; Yamashita et al., 2011), all over the world, 
including: internal and / or external abrasions and ulcers, respectively; and blockages of the digestive 
tract, which can lead to apparent satiety and subsequently to starvation and physical deterioration. In 
turn, this can lead to reduced reproductive capacity, drowning, decreased predator avoidance 
performance, impaired feeding capacity, potential transfer of harmful seawater toxins and, ultimately, 
death (Gregory, 2009). Such harmful effects can also be applied to small organisms, including 
invertebrates, which ingest microplastics, for example, potentially lethal lesions such as digestive tracts or 
abrasions with sharp objects. Other possible impacts have been suggested by the Marine Strategy 
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Framework Directive - Working Group 10 (Galgani et al., 2010), these include: blocking the production of 
enzymes; diminishing feeding stimulus; nutrient dilution; low growth rates; decrease in steroid hormone 
levels; delayed ovulation and reproductive failure; and absorption / accumulation of toxins (Figure 5). 
There is a possibility that microplastics may clog up and block feed nets of marine invertebrates or even 
be embedded in tissues (Derraik, 2002). Fragments of plastic materials, fiber and / or polypropylene 
monofilaments (PP) were found in two filtration feeding devices tissues, the Thetys vagina species, 
collected from neuston samples in the central Pacific North region (Moore et al., 2001a). 
 
The ability to accumulate microplastics in an organism probably greatly affects the physical impact 
associated with microplastic ingestion. To date, there is limited literature on the accumulation of 
microplastics in marine invertebrates and freshwater. However, since the 1970s, microplastics were 
ingested in a species of aquatic worms, Parasagitta elegans (Fam. Sagittidae), which had a microplastic 
sphere with a diameter of 0.6 mm, as the body had a total length of 20 mm (Carpenter et al., 1972). This 
example highlights the invertebrate ability to accumulate the particles formed by microplastics or similar 
particles. Accumulation of microplastic particles in invertebrates could cause blockages of the digestive 
system, suppressing feeding due to apparent satiety. Alternatively, the predator consumption of 
invertebrates contaminated with microplastics represent a way of their transfer and accumulation in the 
food chain (Wright et al., 2013). In addition to internal accumulation, external adsorption of microplastics 
can also produce adverse effects. It has also been shown that the attachment of microplastic particles to 
some algae species, the genus Chlorella sp. and Scenedesmus sp. (Bhattacharya et al., 2010) inhibited 
photosynthesis (most likely due to physical blocking of light and air) and induced an increase in oxidative 
stress (by increasing the production of reactive oxygen species). Since algae play an essential role in 
aquatic feeding networks, the productivity and resistance of ecosystems could be compromised by the 
adverse effects of plastic particles, producing a domino effect with repercussions on the entire 
ecosystem. 
 
The potential adverse effects associated with the presence of microplastics may vary depending on the 
particle form. Benthic organisms have an additional vulnerability to toxicity depending on the form of 
ingested micro- and nano-plastic particles. If initially it was thought that microplastics could be considered 
bio-inerts (Andrady, 2011), due to the lack of enzymatic pathways available to decompose plastics in the 
filtration organisms, being unlikely to be digested or absorbed, it was subsequently shown that they could 
pass through cell membranes and become incorporated into body tissues after ingestion. Of course, more 
research is needed to determine the upper and lower limits of particle size capable of translocation in 
different organisms. In addition, it is necessary to determine the behavior of micro-particles of different 
polymers types and forms. In the natural environment, organisms can be exposed to microplastics 
throughout their lifetime, unlike short experimental times. Thus, ingestion continues and the accumulation 
of such particles can have chronic effects. Moreover, a diverse range of polymers (compared to the 
laboratory-controlled conditions) may appear in the environment, which may cause a different response to 
a particular polymer (Wright et al., 2013). 
 
Other than the physical and chemical impact, microplastics also have a potential role in providing a new 
hard-shell habitat for rafting communities (communities located on drifting elements) that were previously 
limited to natural elements such as floating wood, pumice stone and shells. Moore et al. (2001a) found 
submerged mono-filaments colonized with diatoms and other microscopic algae. Recently, microplastics 
have been identified as an important resource for oviposition in the Halobates sericeus pelagic insect 
(indicating a degree of positive correlation between H. sericeus eggs on microplastics and microplastic 
abundance). The pelagic invertebrate community is a crucial link between primary and non-protozoal 
species. Thus, changes in the population structure, in the case of H. sericeus species, can produce 
widespread consequences on the ecosystem (Goldstein et al., 2012). The increasing abundance of 
microplastics may be able to modify the structural parameters of aquatic organisms. In addition, 
microplastics have a mechanism for long-range transport of species, improving biogeographic 
connectivity. Shellfish species such as Cnidaria, Crustacea and Ectoprocta (Gibson et al., 2005) can be 
considered the most vulnerable population at changes associated with microplastics 
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At trophic chain level, only few studies are available regarding the bioaccumulation of plastics and 
persistent organic pollutants associated with them. Considering the organisms from the lower trophic 
level, especially invertebrates, can ingest and accumulate microplastic particles, it is very probably that 
these microplastics are introduced into the trophic chain. Laboratory studies on microplastic ingestion 
mainly addressed invertebrates, but microplastic ingestion in several species of vertebrates was reported 
in situ. The ingestion of microplastic particles in vertebrates has been reported in countless species of fish 
(Lusher et al., 2013), benthic and pelagic, whales and other filtering organisms, superior organisms in the 
food chain such as seals or sea lions (Goldsworthy et al. 1997, McMahon et al., 1999, Eriksson & Burton, 
2003) and countless species of birds. Currently, there is limited information on the impact of microplastics 
on trophic chain, as their laboratory experiments are currently unavailable. Therefore, it remains 
undetermined if plastic of any size can be transferred to higher trophic levels. There are, however, well-
documented examples of trophic transfer for many persistent organic pollutants in marine trophic 
networks, many of which are reported to be associated with plastic waste (Ogata et al., 2009) and the 
potential of some as bio-magnifiers (Hu et al., 2005). The effect of co-intake of microplastics on the 
trophic-dynamic behavior of POP additives and plastic additives remains an important subject. Other 
important factors that need to be considered for the transfer of microplastics and associated POPs are 
retention times of the intestine (taxon addicts) as well as the fraction of microplastics consumed, able to 
move on the intestinal epithelium and other tissues or organs. 

 
CONCLUSIONS 
 
The importance of this study started from the need to know the existing methods and instruments at the 
European and international level for tackling microplastics problems in aquatic ecosystems, with the final 
goal to lay the foundations of a suitable methodology for monitoring microplastic pollution at the Danube 
Delta Biosphere Reserve level. 
 
As a result of the research carried out, it was found that in the Danube Delta Biosphere Reserve, for 
collecting samples of microplastics in the surface waters, it is recomended to use the fillets with 2-4 m 
length, with openings of the inlet area of 400 x 700 mm and mesh size of about 300 μm. For sampling 
microplastics in the bottom sediment, it was determined that sampling should be carried out with a 
Marinescu metal drain from the 0-20 cm substrate of the bottom sediment in the deposition areas. 
Sample storage and transport should be carried out in low temperature containers and away from 
sunlight. For biota, the, sampling procedures should be tailored to the characteristics and dimensions of 
the species to be studied. 
For extraction of microplastics, saturated NaCl solutions should be used. This procedure has a recovery 
rate of 80 to 100%. 
 
From the point of view of the efficiency of purification methods, it has been established that for 
microplastics in surface water, the use of mineral acids has the highest efficiency in the disintegration of 
organic impurities. In the case of microplastics originating from the bottom sediment, maximum efficiency 
was identified in the procedure based on the disintegration of organic impurities in the 30% solution of 
perhydrochloride. 
Although it was initially believed that ingested microplastics should be bio-inert, the toxic potential of the 
ingested microplastics was reported and characterized, from the molecular level to the individual / 
population level. The toxicity associated with plastics in general, including those associated with meso- 
and microplastics, can be attributed to releases of toxic additives used in the manufacture thereof and / or 
residual monomers, intermediate chemical agents resulting from partial degradation and respectively the 
aggregation of organic pollutants persistent in water in microplastic fragments by absorption and slow 
concentration. 
The physical impact of microplastics on aquatic organisms has been reported in different vertebrate and 
invertebrate groups, mainly induced by: internal and / or external abrasions and ulcers, respectively; 
blockages of the digestive tract, which can lead to apparent satiety and later to starvation and physical 
deterioration, respectively. In turn, this can lead to a reduction in reproductive capacity, drowning, 
decreased predator avoidance performance by impairment of feeding capacity and adverse effects. 
Benthic organisms have an additional vulnerability to toxicity linked with ingested micro- and nano-plastic 
particles form, which is also accentuated by translocation phenomenon in the tissues adjacent of the 
digestive tract. 
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In addition to internal accumulation, external adsorption of microplastics can also produce adverse 
effects. Also, attaching microplastic particles to some algae species can cause a domino effect with 
repercussions on the entire ecosystem. 
The bioaccumulation of plastic materials and persistent organic pollutants associated with them at the 
level of tropical and marine trophic chains is currently insufficiently documented, but it is very likely that 
these microplastics are introduced into the trophic state, given that organisms at lower trophic levels, 
especially invertebrates, can ingest and accumulate microplastic particles. 
 
In view of all of the above, it is necessary to evaluate the microplastic pollution from aquatic ecosystems 
in the Danube Delta in order to create the premises of a sustainable management strategy capable of 
providing a favorable environment for biota and implicitly for human health. 
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